CitB

From SubtiWiki
Revision as of 13:47, 8 December 2014 by Fabian Commichau (talk | contribs) (Biological materials)
Jump to: navigation, search
Gene name citB
Synonyms
Essential no
Product trigger enzyme: aconitate hydratase (aconitase)
Function TCA cycle
Gene expression levels in SubtiExpress: citB
Interactions involving this protein in SubtInteract: CitB
Metabolic function and regulation of this protein in SubtiPathways:
citB
MW, pI 99 kDa, 4.903
Gene length, protein length 2727 bp, 909 aa
Immediate neighbours sspO, yneN
Sequences Protein DNA DNA_with_flanks
Genetic context
CitB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
CitB expression.png















Categories containing this gene/protein

carbon core metabolism, trigger enzyme, RNA binding regulators, most abundant proteins

This gene is a member of the following regulons

CcpA regulon, CcpC regulon, CodY regulon, FsrA regulon

The CitB regulon: feuA-feuB-feuC-ybbA, citZ

The gene

Basic information

  • Locus tag: BSU18000

Phenotypes of a mutant

  • glutamate auxotrophy and a defect in sporulation PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

  • A mutation was found in this gene after evolution under relaxed selection for sporulation PubMed

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
    • Citrate <=> isocitrate
    • Binding to iron responsive elements (IRE RNA) in the absence of the FeS cluster PubMed
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Modification:
  • Effectors of protein activity:

Database entries

  • Structure: 1L5J (E. coli)
  • KEGG entry: [3]

Additional information

  • B. subtilis aconitase is both an enzyme and an RNA binding protein (moonlighting protein) PubMed
  • extensive information on the structure and enzymatic properties of CitB can be found at Proteopedia

Expression and regulation

  • Regulation:
    • repressed during growth in the presence of branched chain amino acids (CodY) PubMed
    • repressed in the presence of glucose and glutamate (CcpC) PubMed
    • expressed upon transition into the stationary phase (AbrB) PubMed, indirect negative regulation by AbrB PubMed
    • repressed by glucose (3.7-fold) (CcpA) PubMed
    • repression by glucose + arginine (CcpC) PubMed
    • less expressed under conditions of extreme iron limitation (FsrA) PubMed
    • part of the iron sparing response (FsrA) PubMed
  • Additional information:
    • belongs to the 100 most abundant proteins PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 5049 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 24371 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 5745 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 3428 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 5655 PubMed

Biological materials

  • Expression vector:
    • GP1439 (citB-Strep (spc)), purification from B. subtilis, for SPINE, available in Jörg Stülke's lab
    • pGP1810 (for expression, purification in E. coli with N-terminal Strep-tag, in pGP172, available in Jörg Stülke's lab
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Jörg Stülke's lab

Labs working on this gene/protein

Your additional remarks

References

Reviews

Karl Volz
The functional duality of iron regulatory protein 1.
Curr Opin Struct Biol: 2008, 18(1);106-11
[PubMed:18261896] [WorldCat.org] [DOI] (P p)

Fabian M Commichau, Jörg Stülke
Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression.
Mol Microbiol: 2008, 67(4);692-702
[PubMed:18086213] [WorldCat.org] [DOI] (P p)

Patricia J Kiley, Helmut Beinert
The role of Fe-S proteins in sensing and regulation in bacteria.
Curr Opin Microbiol: 2003, 6(2);181-5
[PubMed:12732309] [WorldCat.org] [DOI] (P p)

R L Switzer
Non-redox roles for iron-sulfur clusters in enzymes.
Biofactors: 1989, 2(2);77-86
[PubMed:2696478] [WorldCat.org] (P p)

Original publications