EpsE
- Description: inhibitor of motility and glycosyltransferase required for EPS biosynthesis
Gene name | epsE |
Synonyms | yveO |
Essential | no |
Product | glycosyltransferase, inhibitor of motility |
Function | biofilm formation |
Gene expression levels in SubtiExpress: epsE | |
Interactions involving this protein in SubtInteract: EpsE | |
Regulation of this protein in SubtiPathways: Biofilm | |
MW, pI | 32 kDa, 9.804 |
Gene length, protein length | 834 bp, 278 aa |
Immediate neighbours | epsF, epsD |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
| |
Expression at a glance PubMed |
Contents
Categories containing this gene/protein
motility and chemotaxis, biofilm formation, membrane proteins
This gene is a member of the following regulons
AbrB regulon, EAR riboswitch, SinR regulon
The gene
Basic information
- Locus tag: BSU34330
Phenotypes of a mutant
- smooth colonies on MsGG medium, no biofilm formation PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity:
- Protein family: glycosyltransferase 2 family (according to Swiss-Prot)
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Localization: cell membrane, forms spots at flagellar basal bodies PubMed
Database entries
- Structure:
- UniProt: P71054
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Additional information:
- induction by sequestration of SinR by SinI or SlrA PubMed
- the epsA-epsB-epsC-epsD-epsE-epsF-epsG-epsH-epsI-epsJ-epsK-epsL-epsM-epsN-epsO operon is not expressed in a ymdB mutant PubMed
- the amount of the mRNA is substantially decreased upon depletion of RNase Y (this is likely due to the increased stability of the sinR mRNA) PubMed
- the EAR riboswitch (eps-associated RNA switch) located between epsB and epsC mediates processive antitermination and allows expression of the long eps operon PubMed
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
- Daniel Kearns, Indiana University, Bloomington, USA, homepage
- Richard Losick, Harvard Univ., Cambridge, USA homepage
Your additional remarks
References
Reviews
Original publications
The EAR RNA switch
Irnov Irnov, Wade C Winkler
A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales.
Mol Microbiol: 2010, 76(3);559-75
[PubMed:20374491]
[WorldCat.org]
[DOI]
(I p)
Zasha Weinberg, Joy X Wang, Jarrod Bogue, Jingying Yang, Keith Corbino, Ryan H Moy, Ronald R Breaker
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Genome Biol: 2010, 11(3);R31
[PubMed:20230605]
[WorldCat.org]
[DOI]
(I p)
Other original publications
Additional publications: PubMed
Eric R Pozsgai, Kris M Blair, Daniel B Kearns
Modified mariner transposons for random inducible-expression insertions and transcriptional reporter fusion insertions in Bacillus subtilis.
Appl Environ Microbiol: 2012, 78(3);778-85
[PubMed:22113911]
[WorldCat.org]
[DOI]
(I p)
Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol. 2011 81(6): 1459-1473. PubMed:21815947
Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M, Herzberg C, Hübner S, Stülke J A Novel Factor Controlling Bistability in Bacillus subtilis: The YmdB Protein Affects Flagellin Expression and Biofilm Formation. J Bacteriol.: 2011, 193(21):5997-6007. PubMed:21856853